Some Applications of β * - Open Sets

P. Maragatha Meenakshi¹ and J.Sathya²

¹Associate Professor, PG and Research Department of Mathematics, Periyar E.V.R. College, Tiruchirappalli, India. ²Assistant professor, Department of Mathematics, Thanthai Hans Roever college (Autonomous), Perambalur,Tamilnadu,India. Email: maragathameenakship@gmail.com¹ and satvelan@gmail.com²

Abstract- In this paper, β^* -open sets are used to define β^* -US spaces and β^* Urysohn spaces into pological spaces and study some of their basic properties.

Keywords- β^* -open sets, β^* -US space, β^* -Urysohn space.

1. INTRODUCTION

The concept of US-spaces was first introduced by Slepian [3] and was further studied by Culler [2]. A topological space X is said to be a US- space if every sequence in X converges to a unique point. Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the various modified forms of continuity, separation axioms etc. by utilizing generalized open sets. Recently, Ali M. Mubarki et. al. [1] Introduced a new class of generalized open sets called β^* -open sets into the field of topology. In this paper, β^* -open sets are used to define β^* -US spaces and β^* -Urysohn spaces in topological spaces and study some of their basic properties.

2. PRELIMINARIES

For a subset A of a topological space (X, τ) , Cl (A) and Int (A) denote the closure of A and the interior of A, respectively.

Definition 2.1. [4] The δ -closure of A, denoted by Cl_{δ} (A), is defined to be the set of all $x \in X$ such that A \cap Int(Cl(U)) $\neq \phi$ for every open neighbourhood U of X. If A = Cl_{δ} (A), then A is called δ -closed. The complement of a δ -closed set is a called δ -open set. The δ -interior of A is defined by the union of all δ -open sets contained in A and is denoted by Int $_{\delta}$ (A).

Definition 2.2.[1]A sub set of a topological space (X,τ) is said to be β^* -open if $S \subset Int(Cl(Int(S))) \cup Int(Cl_{\delta}(S))$. The

complement of a β^* -closed set is called a β^* -open set. The family of all β^* -open (β^* - closed) subsets of (X, τ) is denoted by $\beta^*O(X)(\beta^*C(X))$. The family of all β^* -open set of (X, τ) containing a point $x \in X$ is denoted by $\beta^*O(X, x)$.

Definition 2.3. [1] The intersection of all β^* -closed sets containing $A \subset X$ is called the β^* -closure of A and is denoted by β^* Cl (A). The union of all β^* -open sets contained in $A \subset X$ is called the β^* -interior of A and is denoted by β^* Int (A).

Definition 2.4. A topological space (X, τ) is said to be

- (1) $\beta^*-T_1[1]$ iff or each pair of distinct point *x* and *y* of X, there exists β^* open sets and U and V such that $x \in U, y \notin U$ and $x \notin V, y \in V$.
- (2) β^* -T₂[1] iff or each pair of distinct point x and y of X, there exists β^* open sets U and V such that $x \in U, y \in V \text{ and } U \cap V = \phi$
- (3) β^* R₁if for $x, y \in X$ with $\beta^*Cl(\{x\}) \neq \beta^*Cl(\{y\})$, there exist disjoint β^* -open sets U and V such that $\beta^*Cl(\{x\}) \subset U$ and $\beta^*Cl(\{y\}) \subset V$.

Theorem 2.5. Let (X, τ) be an topological space. Then $(X, \tau) \beta^*$ is $-T_2$ if and only if it is β^*-R_1 and β^*-T_0 .

3. ON β^* -US-SPACES

Definition 3.1. A sequence (x_n) is said to be:

(1) β^* - convergence to a point x of X, denoted by

 $(x_n) \beta^* x, if(x_n)$ is eventually in every β^* -open

set containing x.

(2) β^* -US if every β^* -convergent sequence (x_n) in X β^* -converges to a unique point.

International Journal of Research in Advent Technology, Vol.6, No.10, October 2018 E-ISSN: 2321-9637 Available online at www.ijrat.org

Clearly every US-space is β^* -US but the converse is not true in general, as it can seen from the following example.

Example 3.2. Let $X = \{a,b,c\}$ and $\tau = \{\phi, \{a,b\}, X\}$. X }.Then $(X, \tau) \beta^*$ -US but not a US-space.

Theorem 3.3. Every β^* - T_2 space is β^* -US.

Proof. Let (X, τ) be a β^* - T_2 space and (x_n) be a sequence in X. Suppose that $(x_n) \beta^*$ converges to two distinct points x and y. That is, (x_n) is eventually in every β^* -open set containing x and also in every β^* -open set containing y. This is a contradiction since (X, τ) is β^* - T_2 . This shows that the space (X, τ) is β^* -US.

Theorem 3.4. Every β^* -US space is β^* - T_1 .

Proof. Let (X,τ) be a β^* -*US* space and *x* and *y* be two distinct points of *X*. Consider the sequence (x_n) where $x_n \neq x$ for every *n*. Clearly $(x_n) \beta^*$ -converges to *x*. Also, since $x \neq y$ and (X,τ) is β^* -*US*, (x_n) cannot β^* -converges to *y*, that is, there exists a β^* -open set *V* containing *y* but not *x*. Similarly, if we consider the sequence (y_n) where $y_n \neq y$ for all *n*, and proceeding as above we get a β^* -open set *U* containing *x* but not *y*. This shows that the space (X, τ) is β^* -*T*₁.

Definition 3.5. A subset S of (X, τ) is said to be:

- (1) sequentially β^* -closed if every sequence in S β^* -converging in X β^* -converges to a point in S.
- (2) sequentially β^* -compact if every sequence in S has a subsequence which β^* converges to a point in S.

Theorem3.6.In a β^* -US space, every sequentially β^* -compact set is sequentially β^* -closed.

Proof. Let (X, τ) be a β^* -US space and Y be a sequentially β^* -compact subset of X.Let (x_n) be a sequence in Y. Suppose that $(x_n) \beta^*$ -converges to a point in X\Y. Let (x_{nk}) be a subsequence of (x_n) which β^* -converges to a point $Y \in Y$ since Y is sequentially β^* -compact. Also, a subsequence (x_{nk}) of $(x_n) \beta^*$ -converges to $x \in X \setminus Y$. Since (x_{nk}) is a sequence in the β^* -US space X, x = y. This shows that Y is sequentially β^* -closed set.

Lemma3.7.[1]*Let* A and X_0 be subsets of a topological space (X, τ) . Then,

 (1) If A ∈ β^{*}O(X) and X₀ is δ-open in (X, τ), then A ∩ X₀∈ β^{*}O(X₀);
(2) If A ∈ β^{*}O(X) and X₀ is open in (X,τ), then A ∩ X₀∈ β^{*}O(X₀);
(3) If A ∈ β^{*}O(X₀) and X₀ ∈ β^{*}O(X),

then $A \in \beta^* O(X)$.

Theorem 3.8. *Every* δ *-open subset of a -US space is* β^* *-US.*

Proof. Let (X, τ) be a β^* -US a topological space and Y be a δ -open subset of X. Let (x_n) be a sequence in Y. Suppose that $(x_n) \beta^*$ - converge to x and y in Y. We shall prove that $(x_n) \beta^*$ converges to x and y in X. Let U be any β^* -open subset of X containing x and V be any β^* -open set of X containing y. Then by Lemma 3.7, $U \cap Y$ and $V \cap Y$ are β^* -open sets in Y. Therefore, (x_n) is eventually in $U \cap Y$ and $V \cap Y$ and so in U and V. Since X is a β^* -US space, this implies that x = y and hence the subspace Y is a β^* -US space.

Theorem3.9.*A topological space* (X,τ) *is* β^*-T_2 *if and only if it is both* β^*-R_1 *and* β^*-US .

Proof. Let(X, τ) be a β^* - T_2 space.Then (X, τ) is β^* - R_1 by Theorem2.5 and β^* -US by Theorem 3.3. Conversely, let (X, τ) be both β^* - R_1 and β^* -US space. By Theorem 3.4, we obtain that every β^* -US space is β^* - T_1 and X is both β^* - T_1 and β^* - R_1 , it follows from Theorem 2.5 that (X, τ) is β^* - T_2 .

Lemma 3.10. [1] *The product of two* β^* *-open sets is* β^* *-open.*

Theorem3.11. A topological space (X,τ) is β^* -US if and only if the diagonal Δ is a sequentially β^* -closed subset of $X \times X$.

Proof. Let (X,τ) be a β^* -US space. Let (x_n, y_n) be a sequence in Δ . Suppose that (x_n, y_n) converges to (x, y). That is, (x_n) β -converges to x and y. Therefore, x = y. Hence Δ is sequentially β -closed. Conversely, let Δ is sequentially β -closed. Let a sequence $(x_n)\beta$ -converges to x and y

Hence, (x_n, y_n) converges to (x, y) Since Δ is sequentially β -closed, $(x, y) \in \Delta$, which means that x = y.

Definition 3.12. A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is said to be strongly β^* -open (resp. strongly β^* -closed) if $f(A) \in \beta^*O(Y)$ (resp. $f(A) \in \beta^*C(Y)$) for every $A \in \beta^*O(X)$ (resp. $A \in \beta^*C(X)$).

Lemma3.13.Let a bijection $f:(X,\tau) \rightarrow (Y,\sigma)$ is strongly β^* -open. Then for any $A \in \beta^*C(X)$, $f(A) \in \beta^*C(Y)$

Theorem3.14.*The* image of a β^* -US space under a bijective strongly β^* -closed is β^* -US.

Proof. Let $f:(X,\tau) \to (Y,\sigma)$ is strongly β^* closed function and let (X, τ) be a β^* -*US* space. Let (y_n) be a sequence in *Y*. Suppose that $(y_n) \beta$ -converges to *x* and *y*. In that case, we shall prove that the sequence $(f^{-1}(y_n)) \beta$ converges to $f^{-1}(x)$ and $f^{-1}(y)$.Let $U \in \beta^* O(X, f^{-1}(x))$.*Then*

 $f(U) \in \beta^* O(X, x)$ and hence (y_n) is eventually in f(U). Therefore, $(f^{-1}(y_n))$ eventually in U. Hence, $(f^{-1}(y_n)) \beta$ -converges to $f^{-1}(x)$. Similarly, we can prove that $(f^{-1}(y_n))$ β -converges to $f^{-1}(y)$. This is not possible, since (X,τ) is β^* -US space. Hence, (Y,σ) is β^* -US.

Definition 3.15. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be:

(1) sequentially β^* -continuous at $x \in X$ if f

 $(x_n) \beta^*$ -converges to f(x) whenever

 (x_n) is a sequence β^* -converging to x;

- (2) Sequentially β^* -continuous iff is sequentially β^* -continuous at all $x \in X$;
- (3) Sequentially nearly β*-continuous if for each point x∈X and each sequence (x_n) in X β*-converging to x, there exists a subsequence(x_{nk}) of (x_n) such that f(x_{nk}) β* f(x);
- (4) Sequentially sub β*-continuous if for each point x∈X and each sequence (x_n) in X β*-converging to x, there exists a subsequence of(x_{nk}) of (x_n) and a point y ∈ Y such that f(x_{nk}) β* y;

 (5) Sequentially β*-compact preserving if the image f(K) of every sequentially β*-compact set K of X is sequentially β*-compact in Y.

Theorem 3.16. Let $f: (X,\tau) \to (Y, \sigma)$ and $g:Y \to Z$ be two sequentially β^* -continuous functions . If Y is β^* -US, then the set $A = \{x: f(x) = g(x)\}$ is sequentially β^* -closed.

Proof. Let *Y* be a β^* -*US* space and suppose that there exists a sequence (x_n) in *A* β^* -converging to $x \in X$. Since *f* and *g* are sequentially β^* -continuous functions, $f(x_n) \beta^*$

f(x) and $g(x_n) \beta * g(x)$. Hence f(x) = g(x) and $\xrightarrow{\rightarrow}$

 $x \in A$. Therefore, we obtain A is sequentially β^* -closed.

Theorem 3.17. Every function $f: (X,\tau) \rightarrow (Y, \sigma)$ is sequentially sub- β^* -continuous if Y is sequentially β^* -compact.

Proof. Let (x_n) be a sequence in $X \beta^*$ converging to a point x of X. Then $(f(x_n))$ is a sequence in Y and as Y is sequentially β^* compact, there exists a subsequence $(f(x_{nk}))$ of $(f(x_n)) \beta^*$ - converging to a point $y \in Y$. This shows that $f: X \to Y$ is sequentially sub- β^* continuous.

Theorem3.18. Every sequentially nearly β^* -continuous function is sequentially β^* -compet preserving.

Proof. Suppose that f: $(X, \tau) \rightarrow Y$ is sequentially nearly β^* -continuous function and let A be any sequentially β^* -compact set of Y. Let (y_n) be any sequence in f(A). Then for each positive integer n, there exists a point $x_n \in A$ such that $f(x_n) = y_n$. Since (x_n) is a sequence in the sequentially β^* -compact set A, there exists a subsequence (x_{nk}) of $(x_n) \beta^*$ converging to a point $x \in A$. Since f is sequentially nearly β^* -continuous, then there exists a subsequence (x_i) of (x_{nk}) such that

 $f(x_j) \beta * f(x)$. Therefore, there exists a

subsequence (y_j) of $(y_n) \beta^*$ - converging to $f(x) \in f(A)$. This shows that f(M) is sequentially β^* -compact set in *Y*.

Theorem 3.19. Every sequentially β^* -compact preserving function is sequentially sub- β^* -continuous.

International Journal of Research in Advent Technology, Vol.6, No.10, October 2018 E-ISSN: 2321-9637

Available online at www.ijrat.org

Proof. Suppose $f: X \to Y$ is a sequentially β^* compact preserving function. Let x be any point of X and (x_n) any sequence in $X \beta^*$ converging to x. We shall denoted the set $\{x_n: n = 1,2,.\}$ by A and $B = A \cup \{x\}$. Then B is sequentially β^* -compact Since $x_n \beta^* x$. Since f is sequentially β^* -compact set

preserving, it follows that f(B) is a sequentially β^* -compact set of Y. Since $(f(x_n))$ is a sequence in f(B), there exists a subsequence $(f(x_{nk}))$ of $(f(x_n)) \beta^*$ -converging to a point $y \in f(B)$. This implies that f is sequentially sub- β^* -continuous.

Theorem 3.20. A function $f : (X, \tau) \to (Y, \sigma)$ is sequentially β^* - compact preserving if and only if $f_{|M}: M \to f(M)$ is sequentially sub- β^* -continuous for each sequentially β^* -compact subset M of X.

Proof. Suppose that $f:(X,\tau) \rightarrow (Y,\sigma)$ is a sequentially β^* -compact preserving function. Then f(M) is sequentially β^* -compact set M of X. Therefore, by Theorem 3.17, $f_{M}: M \rightarrow f$ (M) is sequentially sub- β^* - continuous function. Conversely, let M be any sequentially β^* -compact set in Y. We shall show that f(M) is sequentially β^* -compact set in Y. Let (y_n) be any sequence in f(M). Then for each positive integer n, there exists a point $x_n \in M$ such that $f(x_n) = y_n$. Since (x_n) is a sequence in a sequentially β^* -compact set M, there exists a subsequence (x_{nk}) of $(x_n) \beta^*$ converging to a point $x \in M$. Since $f_{M}: M \to f$ (M) is sequentially sub- β^* -continuous, there exists a subsequence (y_{nk}) of $(y_n) \beta^*$ converging to a point $y \in f(M)$. This implies that f(M) is sequentially β^* -compact set in Y. Thus, f: $X \rightarrow Y$ is sequentially β^* -compact preserving function.

The following theorem gives a sufficient condition for a sequentially sub- β^* -continuous function to be a sequentially β^* -compact preserving.

Theorem3.21. If a function $f: (X, \tau) \rightarrow (Y, \sigma)$ is sequentially sub- β^* -continuous and f(M) is sequentially β^* -closed set in Y for each sequentially β^* -compact set M of X, then f is sequentially β^* compact preserving function.

Proof. We use the previous Theorem. It suffices to prove that $f(M: M \to f(M))$ is sequentially $sub-\beta^*$ -continuous for each sequentially β^* - compact subset M of X. Let (x_n) be any sequence in $M \beta^*$ -converging to a

point $x \in M$. Then since f is sequentially sub- β^* -continuous, there exists a subsequence (x_{nk}) of (x_n) and a point $y \in Y$ such that $f(x_{nk})$ β^* -converges to y. Since $f(x_{nk})$ is a sequence in the sequentially β^* -closed set f(M) of Y,we obtain $y \in f(M)$. This implies that $f_{/M}: M \rightarrow f(M)$ is sequentially sub- β^* -continuous.

4. β*-URYSOHNSPACES

Definition 4.1. An topological space (X,τ) is said to be β^* -Urysohn if for each pair of distinct points x and y in X, there exist $U \in \beta^* O(X, x)$ and $V \in \beta^* O(X, y)$ such that $\beta^* Cl(U) \cap \beta^* Cl(V) = \phi$.

Remark4.2. Every Urysohn space is β^* -Urysohn. But the converse is not true in general, as shown by the following example.

Example 4.3.Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then (X, τ) is β^* - Urysohn but not Urysohn.

Theorem 4.4. A β^* -Urysohn space is β^* - T_1 .

Proof. Let *x* and *y* be any two distinct points of *X*. Since $(X, \tau) \beta^*$ - Urysohn, there exist $U \in \beta^*O(X, x), V \in \beta^*O(X, y)$ such that $\beta^*Cl(U) \cap \beta^*Cl(V) = \phi$. Then $x \notin \beta^*Cl(V)$ and $y \notin \beta^*Cl(U)$. Now, $\beta^*Cl(U), \beta^*Cl(V) \in \beta^*C(X)$. Therefore, $X \setminus \beta^*Cl(U), X \setminus \beta^*Cl(V) \in \beta^*O(X)$ and are such that $x \in X \setminus \beta^*Cl(V)$ and $y \in X \setminus \beta^*Cl(U)$ while $x \notin X \setminus \beta^*Cl(U)$ and $y \notin X \setminus \beta^*Cl(V)$. Thus, (X, τ) is

 β = T_1 .

Theorem 4.5. Every δ -open subset of a β^* -Urysohn space is β^* - Urysohn.

Proof. Let *Y* be a δ -open subset of *X* and *x*, *y* $\in Y \subset X$ such that $x \neq y$. Since (X, τ) is β^* -Urysohn, there exist $U \in \beta^* O(X, x), V \in \beta^* O(X, y)$ such that $\beta^* Cl(U) \cap \beta^* Cl(V) = \phi$. Since *Y* is δ -open, $U \cap Y \in \beta^* O(X, x), V \cap Y \in \beta^* O(X, y)$. Also β^* Y $Cl(U \cap Y) \cap \beta^* Cl(V \cap Y) = (\beta^* Cl(U \cap Y) \cap Y) \cap Y)$ $(\beta^* Cl(V \cap Y) \cap Y) = \beta^* Cl(U \cap Y) \cap \beta^* Cl(V \cap Y) \cap Y \subset \beta^* Cl(U) \cap \beta^* Cl(V) = \phi$. Therefore, $\beta^* Cl(U \cap Y) \cap Y$

 $\beta * Cl(V \cap Y) = \phi$. This indicates that (Y, σ) is an β^{Y} -Urysohn space.

 β^* -Urysohn space remain invariant under

International Journal of Research in Advent Technology, Vol.6, No.10, October 2018 E-ISSN: 2321-9637 Available online at www.ijrat.org

certain bijective function as is shown in the following theorem.

Theorem 4.6. If a bijection $f : (X, \tau) \to (Y, \sigma)$ is strongly β^* -open and (X, τ) is β^* -Urysohn, then (Y, σ) is β^* -Urysohn.

Proof. Let y_1 and y_2 be any two distinct points of *Y*. Since *f* is bijective, $f^{-1}(y_1)$ and $f^{-1}(y_2)$

are two distinct points of X. Since (X, τ) β*-Urysohn, there existU∈ is $\beta^* O(X, f^{-1}(y_1)), V \in \beta^* O(X, f^{-1}(y_2))$ such that $\beta^* Cl(U) \cap \beta^* Cl(V) = \phi$. By the hypothesis of f, we have $f(\beta^*Cl(U)) \in \beta^*C(Y)$, since $\beta^*Cl(U) \in \beta^*Cl(U)$ $\beta^*C(X).$ It follows that β *Cl(f(U))) $\subset f(\beta^* Cl(U)).$ In similar а manner, $\beta^* Cl(f(V))) \subset f(\beta^* Cl(V))$. Then, by the injectivity of f, $\beta * Cl(f(U)) \cap \beta * Cl(f(V)) = \phi$ and hence (Y, σ) is β^* -Urysohn.

Definition 4.7. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be quasi β^* -irresolute if for each $x \in X$ and for each $V \in \beta^* O(Y, f(x))$ there exists $U \in \beta^* O(X, x)$ such that $f(U) \in \beta^* Cl(V)$.

Theorem4.8.*If* (Y,σ) -*Urysohn* and $f:(X,\tau) \rightarrow (Y,\sigma)$ *is strongly* β^* -*irresolute, then* (X,τ) *is* β^* - T_2 .

Proof. Since *f* is injective, for any pair of distinct points $x_1, x_2 \in X$, $f(x_1) = f(x_2)$. The β^* -Urysohn property of *Y* indicates that there exist $V_i \in \beta^* O(X, f(x_i)), i=1, 2$ such that

 $\beta^* \operatorname{Cl}(V_1) \cap \beta^* \operatorname{Cl}(V_2) = \phi$ Hence

 $f^{-1}(\beta * \operatorname{Cl}(V_1)) \cap f^{-1}(\beta * \operatorname{Cl}(V_2)) = \phi$. Since f is strongly β *-irresolute, there exists

 $U_i \in \beta^* O(X, x_i), i=1, 2$ such that $f(U_i) \subset \beta^* Cl(V_i), i=1, 2.$ It then follows that $U_i \subset f^{-1}(\beta^* Cl(V_i)), i=1,2.$ Hence $U_1 \cap U_2 \subset f^{-1}(\beta^* Cl(V_1)) \cap f^{-1}(\beta^* Cl(V_2)) = \phi$. This implies that (X, τ) is $\beta^* T_2$.

Definition 4.9. An topological space (X,τ) is said to be β^* -regular[1] if for each $F \in \beta^*C(X)$ and each $x \notin F$, there exist disjoint β^* -open sets U and V such that $x \in U$ and $F \subset V$.

Theorem4.10.[1]*For a topological space* (X,τ) *, the following properties are equivalent:*

- (1) (X, τ) is β^* -regular;
- (2) For each $U \in \beta^*O(X)$ and each $x \in U$, there exists $V \in \beta^*O(X)$ such that $x \in V$ $\subset \beta^*Cl(V) \subset U$.

Theorem 4.11. A β^* -regular β^* - T_2 space is β^* -Urysohn.

proof. Let (X, τ) be β^* -regular β^* - T_2 space. Since (X, τ) is β^* - T_2 for any pair of distinct points $x_1, x_2 \in X$, there exist $U \in \beta^* O(X, x_1)$ and $V \in \beta^* O(X, x_2)$ such that $U \cap V = \phi$. Now, $X \setminus \beta^* Cl(U)$ is β^* -open in (X, τ) containing x_2 . The β^* -regularity of X gives the existence of a $W \in \beta^* O(X, x_2)$, by Theorem 4.10, such that $x_2 \in W \subset \beta^* Cl(W) \subset X \setminus Cl(U)$. This implies that $\beta^* Cl(U) \cap \beta^* Cl(W) = \phi$. It follows that (X, τ) is β^* -Urysohn.

Theorem4.12.*The product of two* β^* *-Urysohn spaces is* β^* *-Urysohn.*

Proof. Follows from Lemma 3.10.

Definition 4.13. A graph G(f) of a function $f: (X, \tau) \to (Y, \sigma)$ is said to be strongly β^* -closed if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in \beta^* O(X, x)$ and $V \in \beta^* O(Y, y)$ such that $(U \times \beta^* Cl(V) \cap G(f) = \phi$.

Lemma 4.14. A graph G(f) of a function f: $(X,\tau) \rightarrow (Y, \sigma)$ is strongly β^* -closed in $X \times Y$ if and only if for each $(x,y) \in (X \times Y) \setminus G(f)$, there exist $U \in \beta^*O(X, x)$ and $V \in \beta^*O(Y, y)$ such that $f(U) \cap \beta^*Cl(V) = \phi$.

Proof. It is an immediate consequence of Definition4.13.

Theorem 4.15. If $f: (X, \tau) \to (Y, \sigma)$ is quasi β^* irresolute and $(Y, \sigma, \mathfrak{I})$ is β^* -Urysohn, then G(f)is quasi β^* -closed in $X \times Y$.

Proof.Let $(x, y) \in (X \times Y) \setminus G(f)$, then $f(x) \neq y$. Since $(Y, \sigma, \mathfrak{I})$ is β^* -Urysohn, there exist $V \in \beta^*O(Y, y)$, $W \in \beta^*O(Y, f(x))$ such that $\beta^* \operatorname{Cl}(V) \cap \beta^* \operatorname{Cl}(W) = \phi$. Since f is quasi β^* -irresolute, there exists $U \in \beta^*O(X, x)$ such that $f(U) \cap \beta^* \operatorname{Cl}(W) = \phi$. So ,by Theorem 4.15 G(f) is quasi β^* -closed in $X \times Y$. International Journal of Research in Advent Technology, Vol.6, No.10, October 2018 E-ISSN: 2321-9637 Available online at www.ijrat.org

REFERENCES

- [1] Ali M.Mubarki, Massed M.Al-Rshudi, Mohammad A.Al-Juhani, " β^* -Open setsand β^* continuity in topological spaces", Journal of Taibah University for Science 8 (2014)142-148.
- [2] H. F. Cullen, "Unique sequential limits", Bull. U. M. I., 20(1965),123-124.
- [3] A.Slephan, "Anon-Hausdroff topology such that each convergent sequence has exactly one limit", *Amer. Math. Monthly*, 7(1964),776-778.
- [4] N.V.Veličko, "H-closed topological spaces", Amer.Math.Soc.Transl.(2), 78(1968),103-118.